大數據和人工智慧:面對人工智慧的崛起

Share on facebook
Share on twitter
Share on pinterest
Share on weibo

隨著物聯網設備的發展,各種裝置都可以連上網絡,使得阻斷服務攻擊 (DDoS)、勒索病毒、惡意軟體、網路釣魚等網路安全威脅日益新增。此外,網路攻擊變得更加複雜,新型惡意軟件的變種更是層出不窮。網路安全廠商 Watchguard 在2020年第一季發表的網路安全報告就指出,許多惡意軟件都是經過加密的,使其難以檢測及防禦。

然而,這可以借助大數據和人工智慧 (AI) 的科技來解决上述的問題。人工智慧可協助分析從各種設備收集到的大量數據,以實現實时威脅偵測,並可檢測更複雜的安全性漏洞,以强化對潜在威脅的防禦。以 DDoS 攻擊為例,可以事先在網絡上布建攻擊偵測器來收集網路流量等數據,通過人工智慧分析出特定的威脅模式,就能在 DDoS 發動攻擊前偵測到异常,以立即封鎖可疑的威脅。

專業技術領域的人工智慧只能當作輔助

弗蘭克•帕斯誇里認為,有了新的機器人法規之後人工智慧可以更完善地為人類服務,而不是被矽谷工程師封閉起來再決定該用它做什麼,而他對於新機器人法規的建議是,第一作為人工智慧技術人員應該要好好的待在補充專業人士知識的位置上,而不是取代專業人士,第二人工智慧和機器人系統不允許假冒人類,第三我們應該阻止人工智慧參與任何軍事任務,而且機器人和人工智慧系統需要強制地公開自己的身份。

【了解人工智慧、機器學習、演算法、及大數據各自出現在上述案例的何處】

1. 演算法:整套的計算流程可稱作蒙地卡羅求面積的演算法。

2. 機器學習:可以發現電腦學會用蒙地卡羅求面積,並且不再受限既定的幾何圖形,進步到可以計算任意圖形。

3. 大數據:可以發現當丟丟看的次數過少時,機率會不夠精準,而丟的越多次,機率就會越正確。同時也可發現只有電腦可以執行多次的快速運算,在數量及速度都遠勝於人類。

4. 人工智慧:我們讓電腦學會一個人類做不到的求面積方式,不正代表電腦有其特殊的智慧。

※本文章屬於TNZE天擇集團所有嚴禁轉載※

Share on facebook
Share on twitter
Share on whatsapp
Share on weibo

相關內容

最新資訊